窒化ニオブを用いた磁性ジョセフソン素子を世界で初めて実現
国立研究開発法人情報通信研究機構(NICT)
窒化ニオブを用いた磁性ジョセフソン素子を世界で初めて実現
~超伝導量子コンピュータの新たな基本素子として期待~
【ポイント】
■ 窒化ニオブを用いて、低損失で、より冷却が容易な磁性ジョセフソン素子を開発
■ 外部から電流や磁場を加えずに、巨視的位相が自ら180°ねじれた状態を発現
■ 開発した磁性ジョセフソン素子をデバイスに組み込むことで大幅な消費電力の削減
国立研究開発法人情報通信研究機構(NICT、理事長: 徳田 英幸)の山下太郎主任研究員らの研究グループは、今回、世界で初めて、窒化ニオブを用いた窒化物超伝導体による新奇な磁性ジョセフソン素子の開発に成功しました。
ジョセフソン素子を用いた超伝導デバイスの動作には、外部から電流や磁場を加えて巨視的位相のねじれを発生させることが必要不可欠です。今回開発した磁性ジョセフソン素子では、巨視的位相が自らねじれた状態を実現することができるため、従来必要であった電流や磁場を大幅に削減することができ、超伝導量子コンピュータをはじめとする様々な超伝導デバイスの高性能化に向けて大きなブレークスルーとなるものです。
本研究成果は、11月14日付け(現地時間)の米国科学誌Physical Review Appliedに掲載されました。なお、本成果の一部は、JSTさきがけ(JPMJPR1669)の一環として得られたものです。
【背景】
次世代のデバイスとして超伝導量子コンピュータや低消費電力回路が注目されており、超伝導デバイスの開発が進められています。通常、ジョセフソン素子を利用した超伝導デバイスでは、ジョセフソン素子の「巨視的位相」にねじれを発生させるために、外部から電流や磁場を加える必要があり、消費電力の増加や外来ノイズの原因となっていました。それに対し、磁性ジョセフソン素子は、巨視的位相が自ら180°ねじれた「パイ状態」を発現します。そのため、磁性ジョセフソン素子を超伝導回路に組み込むことで、巨視的位相にねじれを生じさせるのに必要な電流や磁場を大幅に削減でき、超伝導デバイスの大規模化が容易になります。
これまで磁性ジョセフソン素子として、超伝導体にニオブを用いた素子が報告されていました。しかし、より超伝導転移温度の高い窒化ニオブを用いることで、冷却に必要な電力を削減することができます。また、窒化ニオブや窒化チタン等の窒化物超伝導体は、超伝導量子コンピュータの低損失な超伝導材料として注目されているため、これらを用いた磁性ジョセフソン素子の実現が期待されていました。
一方で、コヒーレンス長が短い窒化ニオブで磁性ジョセフソン素子を実現するには、接合界面のより精密な制御が必要なことから、その作製は困難でした。
【今回の成果】
今回、我々は酸化マグネシウム基板上に結晶配向成長し、表面平滑性に優れた窒化ニオブ薄膜を用いることで、接合界面の精密な制御を行い、窒化物超伝導体による「パイ状態」磁性ジョセフソン素子を世界で初めて実現しました。
厚さの異なる磁性層を持つ複数個の素子を作製し、ジョセフソン臨界電流を測定した結果、磁性層がある膜厚範囲にある素子で、図2に示すように、巨視的位相が180°ねじれるパイ状態を発現していることを実験的に確認しました。
通常のジョセフソン素子では、位相のねじれがない「0状態」が安定で、ジョセフソン臨界電流は温度上昇に対して単調に減少しますが、磁性ジョセフソン素子では、磁性層の厚さや動作温度に対して、0状態とパイ状態が変化します。状態が変わるポイント(転移点)では、ジョセフソン臨界電流の温度依存性に、磁性ジョセフソン素子に特有のディップ構造が現れます。我々は、ジョセフソン臨界電流の温度依存性において、明瞭なディップ構造の観測に成功しました(図3参照)。これにより、我々の作製した磁性ジョセフソン素子において、確かにパイ状態が生じていることを実証しました。
パイ状態では巨視的位相のねじれが生じているため、例えば、超伝導体のリングに磁性ジョセフソン素子を組み込むと、外部から電流や磁場を与えなくてもリング中に自ら電流が流れます。
将来的には開発した素子を超伝導量子コンピュータや超伝導集積回路に組み込むことにより、巨視的位相制御に必要な外部電流やミリテスラレベルの磁場の大幅な削減が可能になり、消費電力や外来ノイズの低減に大きく寄与することが期待できます。
【今後の展望】
今後は、超伝導量子コンピュータや超伝導集積回路における従来のジョセフソン素子を、今回開発した窒化物超伝導体を用いた磁性ジョセフソン素子で置き換えることで、より大規模化が容易な超伝導量子コンピュータや、更なる低消費電力動作が可能な超伝導集積回路の実現を目指します。
中田花奈が照れ笑い「アイドル時代でもやらなかったかわいい髪形」麻雀本でチャイナ風衣装姿に
チョコプラが鳥取県の平井伸治知事と「TT」ポーズ披露「ティッティリ美術館に行きましょう」
DJ KOO「パワーになれるように」慈善ライブでTRFメドレーなどDJ披露 大原櫻子らも出演
清塚信也「後悔させません」自身もピアノ演奏で参加する「こども音楽フェスティバル」をPR
長濱ねるが手話であいさつ「音を視覚化する最新の技術を体験させていただき、本当にびっくり」
北野武監督、最新作映画は「かなり実験的な映画」今回の製作経験で“未来の映画”も語る
ローランド、28日閉館の新宿アルタを背に「アルタか それ以外か」と感謝メッセージ
【C大阪】大体大から新加入の古山兼悟「気持ち高まる」J1開幕の大阪ダービーでプロデビューか
最強寒波 6日は北海道~北陸でドカ雪 7日~8日は再びピークで西日本も警報級大雪
忽那汐里が仰天の金髪姿!別人級イメチェン「お人形さん」「お姫様??」と称賛の声
台湾トップ女優、日本旅行中にインフルエンザにかかり肺炎合併症で死亡
小島瑠璃子夫の会社が訃報掲載「29歳で永眠いたしました」通夜・葬儀は「近親者のみで」
小島瑠璃子の夫が救急搬送先で死亡、事件性なし 23年に結婚
天木じゅん「透けすぎ」バスト写真を大胆公開!「天然のおっぱいですからね」
小島瑠璃子が夫の急死つづる「突然の別れとなり、後悔がたくさんあります」
小島瑠璃子、救急搬送先での夫死亡で更新ストップSNSに「心配」「お大事に」の声
笑福亭鶴瓶への対応「もう恐ろしすぎて」今田耕司「仕事に影響出るって…」ワイドナショーで指摘
「スシロー」写真削除渦中の鶴瓶、ラジオ冒頭で「本当にですね、何言うていいか分からん…」
NHK「べらぼう」出演セクシー女優「妖艶」ランジェリーショット公開「尻の曲線美」「ナイス」
TKO木下隆行がYouTuberとのトラブル改めて謝罪 弁護士から「性加害にあたる」と指摘
四千頭身、テレビから消えた理由を明かすも批判殺到「人のせいにするな」
被害女性の代理人弁護士がコメント 中居正広氏とのトラブル
多部未華子(30)結婚の裏事情あまりにも恐ろしすぎると話題に!
中居正広氏自宅BBQ同席のヒロミの本音と肉声「恐怖感じ」「一睡もできず」妻松本伊代にも共有
和田アキ子が頭下げ生謝罪「アッコにおまかせ」内で発言の約7分後「失礼いたしました」
クロちゃんを騙した「レイちゃま(小林レイミ)」の現在が別人すぎると話題に
台湾トップ女優、日本旅行中にインフルエンザにかかり肺炎合併症で死亡
吉田沙保里、大久保嘉人との不倫疑惑を一蹴するも冷ややかな声
二階堂ふみが結婚!?お相手が衝撃的過ぎてネット民「マジか・・・」
【おすすめアニメ50選】完結済み!定番から最新作まで!
中田花奈が照れ笑い「アイドル時代でもやらなかったかわいい髪形」麻雀本でチャイナ風衣装姿に
チョコプラが鳥取県の平井伸治知事と「TT」ポーズ披露「ティッティリ美術館に行きましょう」
DJ KOO「パワーになれるように」慈善ライブでTRFメドレーなどDJ披露 大原櫻子らも出演
清塚信也「後悔させません」自身もピアノ演奏で参加する「こども音楽フェスティバル」をPR
長濱ねるが手話であいさつ「音を視覚化する最新の技術を体験させていただき、本当にびっくり」
北野武監督、最新作映画は「かなり実験的な映画」今回の製作経験で“未来の映画”も語る
ローランド、28日閉館の新宿アルタを背に「アルタか それ以外か」と感謝メッセージ
【C大阪】大体大から新加入の古山兼悟「気持ち高まる」J1開幕の大阪ダービーでプロデビューか
最強寒波 6日は北海道~北陸でドカ雪 7日~8日は再びピークで西日本も警報級大雪
忽那汐里が仰天の金髪姿!別人級イメチェン「お人形さん」「お姫様??」と称賛の声